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• HED corresponds to E/V > 1012 ergs/cm3   (P > 1 Mbar)
• See Laboratory HEDPP session K7 Sunday afternoon
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Omega laser

Z pinch facility, SNLA

20 MA, 1 MJ of x-rays,
10-100 ns, ~cm scl targets
(E/V ~ 1013 erg/cm3)

    Omega laser,
Univ. of Rochester

The National Ignition Facility, LLNL,
      (under construction)

192 arms, 2 MJ,
1/3 µm, 1-100 ns, 
mm - cm scl targets
(E/V ~ 1013 - 1016 erg/cm3)

• See Keith Matzen talk, K7.001, Sun.  afternoon in the HEDPP session

HED facilities generate large E/V over short durations.  
Examples are large lasers and magnetic pinch facilities.

60 arms, 30 kJ,
1/3 µm, 1-10 ns, 
~mm scl targets
(E/V ~ 1014 erg/cm3)
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High energy density facilities are a key ingredient
towards achieving precision astrophysics

• The extreme conditions found in astrophysics can be reproduced in the laboratory
   only on HED facilities

• Astrophysics simulation codes can be tested under relevant conditions

• Physics models and concepts can be tested under relevant conditions

• Fundamental quantities (opacities, EOS) can be measured under relevant conditions

• Aspects of scaled dynamics can be reproduced under relevant conditions

• Achieving precision astrophysics requires such HED facilities 

• A selection of examples will be shown, drawn from:
- planetary interiors
- Cepheid variable stars
- supernovae
- accreting neutron stars and black holes
- gamma-ray bursts

       

Regimes:
- degenerate plasmas
- rad-hydro
- rad-hydro
- radiation-dominated
- relativistic
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Planetary interiors

• Can we understand planetary interiors and planetary 
   formation mechanisms, ie, planetary birth?

• Regime:  degenerate plasmas
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Tristan Guillot, Science 286, 72 (1999)

Models for planetary interiors require an accurate
understanding of the EOS of dense plasma

Jupiter Jupiter:

Mass (MJ)

R
ad

iu
s 

(R
J)

δR
/R

 (
%

)

~2 Mbar

40 Mbar

Extrasolar giant planets
80 Mbar

Molecular H2

Metallic H

?????

1                    10                  100

0.8

1.2

1.6

Rock - ice core?

EOS

10

0

10

M/M J :
0.3 1 3 10



April_APS_02_2.ppt

HED experiments replicate the extreme pressures 
of the interior of Jupiter in recent EOS msmts
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• Experiments in the most critical 
   0.5 - 10 Mbar regime are possible

Knudson et al, PRL 87, 5501 (2001
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These recent measurements of the D2 EOS have generated 
enormous interest in the astrophysics community

Guillot et al., to appear in “The Interior of Jupiter” book

PIMC

PPT EOS

• Different planetary models are being 
  compared to the HED data
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• The implications of these models on the interior
   of Jupiter are significant (ie, a core or not)

• Different planetary formation models are discriminated 
   by the existence of a central core in Jupiter

Guillot et al., Icarus 130, 534 (1997)
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What have we learned?

• Hydrogen EOS is much more difficult than we thought!

• Only additional HED experiments will resolve which planetary 
   interior model is correct

•  Results will affect planetary formation models

• See Bob Cauble talk, K7.005, Sun. afternoon
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Cepheid variables

• Can we understand Cepheid variable stars as standard 
   candles, ie, a calibrated “yardstick of the universe”?

•  Regime:  coupled radiation hydrodynamics
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Cepheid variables are stars whose luminosities 
pulsate with periods of a few days to a few weeks

• Period ~ Size, Luminosity ~ size, hence Luminosity  ~ Period
• Since L ∝  P, Cepheids serve as standard candles 
• Since L ∝  R-2, Cepheids are the most reliable distance indicator

Galaxy M100 A Cepheid variable in M100, observed with HST WFPC2

J. Trauger, JPL and NASAJ. Trauger, JPL and NASA

Distance = 56 x 106 lgt yr
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Why do Cepheid variables pulsate, and why are 
the periods of pulsation sensitive to opacity?
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What have we learned?

• Correct microphysics (accurate opacities) is needed to 
   reproduce observed macrophysics (stellar pulsation periods)

• Opacities of high-Z elements (eg., Fe) are very complex

• Direct measurements under relevant conditions can be made

• See Paul Springer talk, K7.003, Sun. afternoon
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Supernovae

• Can we understand supernova explosion and 
   remnant dynamics, ie, stellar death?

• Regime:  coupled radiation hydrodynamics
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A core-collapse supernova occurs when
the Fe core of a massive star collapses

SN1987 light 
curve

Woosley and Weaver 
(1989)
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• Light curve of SN1987A was broad, with an early rise
• γ-rays from 56Co were observed 2x sooner than expected
• Strong mixing, core penetration suggested
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HED experiments reproduce aspects of 
scaled SN explosion hydrodynamics

Planar 2-mode RT, 13ns
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K.S. Budil, private communication (2002)

λ = 120 µm

Robey et al., Phys. Plasmas 8, 2446 (2001)
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• A scale transformation of the Euler equations relates the lab experiment to the SN

Spherical RT, t = 13 ns
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Drake et al., Ap. J. 564, 896 (2002)
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Simulations of supernova explosions show extensive
material interpenetration, do not appear to be turbulent

Experimental image of a
turbulent flow at Re = 104

SN simulation at Renum~103 :
unstable but non-turbulent,

vs. ReSN ~1010 : fully turbulent
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High-Re flows are turbulent SN simulations are not 3D HED experiments may be

Robey (2002)

Kifonidis, Ap. J. 531, L123 (2000)Van Dyke (1982)
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What have we learned?

• Actual SNe are high Reynolds number flows, so should be fully turbulent

• Simulations of core-collapse SNe do not transition to turbulence, 
   whereas actual SNe must be fully turbulent

• Scaled SN experiments can bridge this gap and illustrate the
   impact of the transition to turbulence 

• See Paul Drake talk, K7.003, Sun. afternoon
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Accreting black holes
   and neutron stars

• Can we understand neutron star, black hole 
   accretion dynamics, ie, stellar post-mortem

• Regime:  radiation-dominated plasma
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Accreting neutron stars and black holes offer spectral 
signatures of the dynamics as matter spirals inward

• Analysis and interpretation requires 
   accurate photoionization models
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Ferrarese et al., Ap. J. 470, 444 (1996) 
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D.A. Liedahl & F. Paerels, 
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HED experiments reproduce the conditions of 
radiation-dominated photoionized plasmas

R.F. Heeter et al., 
RSI 72, 1224 (2001)
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What have we learned?

• Current astrophysics photoionized plasma  models differ by factors of 2 in <Z>

• Laboratory data is critical for calibrating these models

• Experiments under relevant conditions have been demonstrated

• See Paul Springer talk, K7.003, Sun. afternoon
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Gamma-ray bursts

• Can we understand gamma-ray burst explosion 
   mechanisms and dynamics, ie, what are they?

• Regime:  relativistic plasmas
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Gamma-ray bursts currently are the 
greatest enigma in modern astrophysics

 
Woosley & MacFadyen,
Astron. Astrophys. Suppl. 
Series 138, 499 (1999)
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HED experiments on ultra-intense lasers access the 
relativistic plasma regime, relevant to aspects of GRBs
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Experiments on ultra-intense lasers in the relativistic 
plasma regime have observed new physics phenomena

105

106

107

108

109

1010

1011

dN
/d

Ed
Ω  

e- at 30o

e- at 95o

e+ at 30o

(1
 / 

M
eV

-s
r)

Photon energy (MeV)

Photon energy (MeV)

Cowan et al., Laser & Part. Beams 17, 773 (1999)

P
ht

on
s/

ke
V

/s
r

0           2            4           6            8          10

Positrons

Electrons

1                           10                          100

Norreys et al., 
Phys. Plasmas 6,2150(1999)

1019 W/cm2,
Tγ = 4 MeV

Te = 7 MeV

• See Warren Mori talk K7.004 Sun. afternoon

30o

95o

dN
/d

E
. d

Ω
 (

M
eV

-1
 s

r-1
)

Photons

Snavely et al., 
PRL 85, 2945 (2001)

Protons

Proton energy (MeV)

N
*1

09  
pr

ot
on

s/
M

eV

C. Toupin et al., IFSA 99 Publ. Elsevier, p. 471 (2000)

Laser
 pulse

1020 W/cm2 1020 W/cm2

Vulcan laser

Petawatt laser

T ~ <Ep> ~ 4 MeV



April_APS_02_6.ppt

What have we learned?

• Relativistic plasmas can be accessed experimentally

• New, unexpected physics phenomena were observed

• Dynamics of an e+e- (micro) fireball may be experimentally accessible

• These relativistic plasmas may have relevance to aspects of GRBs

• See Warren Mori talk, K7.004, Sun. afternoon
• See Jay Salomonson poster, N17.057, Mon. morning
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The future
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HED facilities for the next decade include the ~2 MJ NIF and LMJ lasers,
the upgraded Z-R pinch facility, and several petawatt lasers

NIF construction site

The future:

LMJ design

Z-R conceptual design
Osaka Univ. Petawatt project

Also UK, France, Germany, US
• See Keith Matzen talk, K7.001, Sun. afternoon
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New facilities and new capabilities make the coming decade 
particularly exciting for the field of HEDP

• 2-MJ NIF in U.S. + Petawatt(s?)
• 2-MJ LMJ in France
• 60-beam Omega + Petawatt
• 12-beam Gekko + Petawattt (Japan)
• 5-kJ/10-beam Vulcan + 2 x Petawatt (U.K.)
• LULI Petawatt (France)
• GSI Petawatt (Germany)
• Z-R pinch facility + Petawatt
•  60-kJ/60-beam SG-III (China)

• first laboratory demonstration of thermonuclear ignition
• intense bursts of neutrons may access r-, s-, p-processes
• possible ignition physics studies of relevance to SNe-1a
• fully turbulent, hydrodynamic tests for SNe
• scaled SNe V&V testbed
• EOS at very high pressures: white dwarfs, brown dwarfs
• expansion opacity, rad-flow msmts relevant to SNe
• photoionized plasmas relevant to accretion disks, AGN
• radiative shocks relevant to SNR 
• access aspects of neutron star atmospheres at ~1 keV
• relativistic plasma testbed, possible relevance to GRB
• concept for accessing Unruh radiation physics
• Gigagauss magnetic fields (n-star atmos.)
• implode rotating core
• core-kick asymmetic implosions
• solid-state properties at Jupiter core pressures
• definitive test of plasma phase transition

New capabilities these will provide:

Facilities to look forward to:


